Reference: Suntio T, et al. (2011) ATPase activity of a yeast secretory glycoprotein allows ER exit during inactivation of COPII components Sec24p and Sec13p. Yeast 28(6):453-65

Reference Help

Abstract


Proteins exit the endoplasmic reticulum (ER) in vesicles pinching off from the membrane at sites covered by the COPII coat, which consists of Sec23/24p and Sec13/31p. We have shown that the glycoprotein Hsp150 exits the ER in the absence of Sec13p or any member of the Sec24p family. The determinant responsible for this resides in the C-terminal domain of Hsp150 (CTD). Here, A- and B-type Walker motifs were identified in the CTD. Authentic Hsp150 from the yeast culture medium, as well as Hsp150 and the CTD fragment produced in Escherichia coli, exhibited ATPase activity nearly three times higher than the published activity of the ER chaperone Kar2p/BiP. Deletion of the Walker motif, and a K335A mutation in it, abolished the ATPase activity. Hsp150 homologues Pir3p and Pir4p, differing in critical amino acids of the Walker motif, also lacked ATPase activity. Unexpectedly, inactivation of the ATPase activity blocked ER exit of Hsp150 in the absence of Sec24p or Sec13p function, whereas secretion in normal cells was not compromised. To our knowledge this is the first documentation of the ATPase activity of a protein serving an intracellular transport function.

Reference Type
Journal Article
Authors
Suntio T, Shiryaev SA, Makarow M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference