Take our Survey

Reference: Nieduszynski CA and Liti G (2011) From sequence to function: Insights from natural variation in budding yeasts. Biochim Biophys Acta 1810(10):959-66

Reference Help

Abstract


BACKGROUND: Natural variation offers a powerful approach for assigning function to DNA sequence-a pressing challenge in the age of high throughput sequencing technologies. METHODS: Here we review comparative genomic approaches that are bridging the sequence-function and genotype-phenotype gaps. Reverse genomic approaches aim to analyse sequence to assign function, whereas forward genomic approaches start from a phenotype and aim to identify the underlying genotype responsible. CONCLUSIONS: Comparative genomic approaches, pioneered in budding yeasts, have resulted in dramatic improvements in our understanding of the function of both genes and regulatory sequences. Analogous studies in other systems, including humans, demonstrate the ubiquity of comparative genomic approaches. Recently, forward genomic approaches, exploiting natural variation within yeast populations, have started to offer powerful insights into how genotype influences phenotype and even the ability to predict phenotypes. CONCLUSIONS: Comparative genomic experiments are defining the fundamental rules that govern complex traits in natural populations from yeast to humans. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright ? 2011 Elsevier B.V. All rights reserved.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
Nieduszynski CA, Liti G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference