Take our Survey

Reference: Deshpande AM, et al. (2011) Polymerase epsilon is required to maintain replicative senescence. Mol Cell Biol 31(8):1637-45

Reference Help

Abstract

Replicative senescence is a permanent cell cycle arrest in response to extensive telomere shortening. To understand the mechanisms behind a permanent arrest, we screened for factors affecting replicative senescence in budding yeast lacking telomere elongation pathways. Intriguingly, we found that DNA polymerase epsilon (Pol epsilon) acts synergistically with Exo1 nuclease to maintain replicative senescence. In contrast, the Pol epsilon-associated, checkpoint and replication protein Mrc1 facilitates escape from senescence. To understand this paradox, in which DNA-synthesizing factors cooperate with DNA-degrading factors to maintain arrest, whereas a checkpoint protein opposes arrest, we analyzed the dynamics of double and single stranded DNA (ssDNA) at chromosome ends during senescence. We found evidence for cycles of DNA resection, followed by re-synthesis. We propose that resection of the shortest telomere, activating a Rad24(Rad17)-dependent checkpoint pathway, alternates in time with an Mrc1-regulated, Pol epsilon-re-synthesis of a short, double-stranded chromosome end, which in turn activates a Rad9(53BP1)-dependent checkpoint pathway. Therefore, instead of one type of DNA damage, different types (ssDNA and a double strand break-like structure) alternate in a vicious circle, each activating a different checkpoint sensor. Every time resection and re-synthesis switches, a fresh signal initiates, thus preventing checkpoint adaptation and ensuring the permanent character of senescence.

Reference Type
Journal Article
Authors
Deshpande AM, Ivanova IG, Raykov V, Xue Y, Maringele L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference