Take our Survey

Reference: Stolz A, et al. (2010) Dfm1 forms distinct complexes with Cdc48 and the ER ubiquitin ligases and is required for ERAD. Traffic 11(10):1363-9

Reference Help

Abstract

Proteins imported into the endoplasmic reticulum (ER) are scanned for their folding status. Those that do not reach their native conformation are degraded via the ubiquitin-proteasome system. This process is called ER-associated degradation (ERAD). Der1 is known to be one of the components required for efficient degradation of soluble ERAD substrates like CPY(*) (mutated carboxypeptidase yscY). A homologue of Der1 exists, named Dfm1. No function of Dfm1 has been discovered, although a C-terminally hemagglutinin (HA)(3)-tagged Dfm1 protein has been shown to interact with the ERAD machinery. In our studies, we found Dfm1-HA(3) to be an ERAD substrate and therefore not suitable for functional studies of Dfm1 in ERAD. We found cellular, non-tagged Dfm1 to be a stable protein. We identified Dfm1 to be part of complexes which contain the ERAD-L ligase Hrd1/Der3 and Der1 as well as the ERAD-C ligase Doa10. In addition, ERAD of Ste6(*)-HA(3) was strongly dependent on Dfm1. Interestingly, Dfm1 forms a complex with the AAA-ATPase Cdc48 in a strain lacking the Cdc48 membrane-recruiting component Ubx2. This complex does not contain the ubiquitin ligases Hrd1/Der3 and Doa10. The existence of such a complex might point to an additional function of Dfm1 independent from ERAD.CI - (c) 2010 John Wiley & Sons A/S.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Stolz A, Schweizer RS, Schafer A, Wolf DH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference