Take our Survey

Reference: Kuroda T, et al. (2011) FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis. Mol Microbiol 80(1):248-65

Reference Help

Abstract

Mitochondria of the yeast Saccharomyces cerevisiae contain enzymes Crd1p and Psd1p, which synthesize cardiolipin (CL) and phosphatidylethanolamine, respectively. A previous study indicated that crd1Delta is synthetically lethal with psd1Delta. In this study, to identify novel genes involved in CL metabolism, we searched for genes that genetically interact with Psd1p, and found that deletion of FMP30 encoding a mitochondrial inner membrane protein results in a synthetic growth defect with psd1Delta. Although fmp30Delta cells grew normally and exhibited a slightly decreased CL level, fmp30Deltapsd1Delta cells exhibited a severe growth defect and an about twenty-fold reduction in the CL level, as compared to the wild-type control. We found also that deletion of FMP30 caused a defect in mitochondrial morphology. Furthermore, FMP30 genetically interacted with seven mitochondrial morphology genes. These results indicated that Fmp30p is involved in the maintenance of mitochondrial morphology and required for the accumulation of a normal level of CL in the absence of mitochondrial phosphatidylethanolamine synthesis.CI - (c) 2011 Blackwell Publishing Ltd.

Reference Type
Journal Article
Authors
Kuroda T, Tani M, Moriguchi A, Tokunaga S, Higuchi T, Kitada S, Kuge O
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference