Reference: Layton AT, et al. (2011) Modeling vesicle traffic reveals unexpected consequences for cdc42p-mediated polarity establishment. Curr Biol 21(3):184-94

Reference Help

Abstract


BACKGROUND: Polarization in yeast has been proposed to involve a positive feedback loop whereby the polarity regulator Cdc42p orients actin cables, which deliver vesicles carrying Cdc42p to the polarization site. Previous mathematical models treating Cdc42p traffic as a membrane-free flux suggested that directed traffic would polarize Cdc42p, but it remained unclear whether Cdc42p would become polarized without the membrane-free simplifying assumption. RESULTS: We present mathematical models that explicitly consider stochastic vesicle traffic via exocytosis and endocytosis, providing several new insights. Our findings suggest that endocytic cargo influences the timing of vesicle internalization in yeast. Moreover, our models provide quantitative support for the view that integral membrane cargo proteins would become polarized by directed vesicle traffic given the experimentally determined rates of vesicle traffic and diffusion. However, such traffic cannot effectively polarize the more rapidly diffusing Cdc42p in the model without making additional assumptions that seem implausible and lack experimental support. CONCLUSIONS: Our findings suggest that actin-directed vesicle traffic would perturb, rather than reinforce, polarization in yeast.CI - Copyright (c) 2011 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article
Authors
Layton AT, Savage NS, Howell AS, Carroll SY, Drubin DG, Lew DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference