Take our Survey

Reference: Martin DC, et al. (2011) New Regulators of a High Affinity Ca2+ Influx System Revealed through a Genome-wide Screen in Yeast. J Biol Chem 286(12):10744-54

Reference Help

Abstract


The bakers yeast Saccharomyces cerevisiae utilizes a high-affinity Ca2+ influx system (HACS) to survive assaults by mating pheromones, tunicamycin, and azole-class antifungal agents. HACS consists of two known subunits, Cch1 and Mid1, which are homologous and analogous to the catalytic alpha-subunits and regulatory alpha2delta-subunits of mammalian voltage-gated calcium channels (VGCCs), respectively. To search for additional subunits and regulators of HACS, a collection of gene knockout mutants was screened for abnormal uptake of Ca2+ after exposure to mating pheromone or to tunicamycin. The screen revealed that Ecm7 is required for HACS function in most conditions. Cycloheximide chase experiments showed that Ecm7 was stabilized by Mid1 and Mid1 was stabilized by Cch1 in non-signaling conditions, suggesting they all interact. Ecm7 is a member of the PMP-22/EMP/MP20/Claudin superfamily of transmembrane proteins, which includes gamma-subunits of VGCCs. Eleven additional members of this superfamily were identified in yeast, but none were required for HACS activity in response to the stimuli. Remarkably, many dozens of genes involved in vesicle-mediated trafficking and protein secretion were required to prevent spontaneous activation of HACS. Taken together, the findings suggest that HACS and calcineurin monitor performance of the membrane trafficking system in yeasts and coordinate compensatory processes. Conservation of this quality control system in Candida glabrata suggests that many pathogenic species of fungi may utilize HACS and calcineurin to resist azole-class antibiotics and other compounds that target membrane biosynthesis.

Reference Type
Journal Article
Authors
Martin DC, Kim H, Mackin NA, Maldonado-Baez L, Evangelista CC, Beaudry VG, Dudgeon DD, Naiman DQ, Erdman SE, Cunningham KW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference