Reference: Katan-Khaykovich Y and Struhl K (2011) Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc Natl Acad Sci U S A 108(4):1296-301

Reference Help

Abstract


Nucleosome deposition occurs on newly synthesized DNA during DNA replication and on transcriptionally active genes via nucleosome-remodeling complexes recruited by activator proteins and elongating RNA polymerase II. It has been long believed that histone deposition involves stable H3-H4 tetramers, such that newly deposited nucleosomes do not contain H3 and H4 molecules with their associated histone modifications from preexisting nucleosomes. However, biochemical analyses and recent experiments in mammalian cells have raised the idea that preexisting H3-H4 tetramers might split into dimers, resulting in mixed nucleosomes composed of "old" and "new" histones. It is unknown to what extent different genomic loci might utilize such a mechanism and under which circumstances. Here, we address whether tetramer splitting occurs in a locus-specific manner by using sequential chromatin immunoprecipitation of mononucleosomes from yeast cells containing two differentially tagged versions of H3 that are expressed "old" and "new" histones. At many genomic loci, we observe little or no nucleosomal cooccupancy of old and new H3, indicating that tetramer splitting is generally infrequent. However, cooccupancy is detected at highly active genes, which have a high rate of histone exchange. Thus, DNA replication largely results in nucleosomes bearing exclusively old or new H3-H4, thereby precluding the acquisition of new histone modifications based on preexisting modifications within the same nucleosome. In contrast, tetramer splitting, dimer exchange, and nucleosomes with mixed H3-H4 tetramers occur at highly active genes, presumably linked to rapid histone exchange associated with robust transcription.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Katan-Khaykovich Y, Struhl K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference