Take our Survey

Reference: Wiltrout ME and Walker GC (2011) Proteasomal regulation of the mutagenic translesion DNA polymerase, Saccharomyces cerevisiae Rev1. DNA Repair (Amst) 10(2):169-75

Reference Help

Abstract


Translesion DNA synthesis (TLS) functions as a tolerance mechanism for DNA damage at a potentially mutagenic cost. Three TLS polymerases (Pols) function to bypass DNA damage in Saccharomyces cerevisiae: Rev1, Pol zeta, a heterodimer of the Rev3 and Rev7 proteins, and Pol eta (Rad30). Our lab has shown that S. cerevisiae Rev1 protein levels are under striking cell cycle regulation, being approximately 50-fold higher during G2/M than during G1 and much of S phase (Waters and Walker, 2006). REV1 transcript levels only vary approximately 3-fold in a similar cell cycle pattern, suggesting a posttranscriptional mechanism controls protein levels. Here, we show that the S. cerevisiae Rev1 protein is unstable during both the G1 and the G2/M phases of the cell cycle, however, the protein's half-life is shorter in G1 arrested cells than in G2/M arrested cells, indicating that the rate of proteolysis strongly contributes to Rev1's cell cycle regulation. In the presence of the proteasome inhibitor, MG132, the steady-state levels and half-life of Rev1 increase during G1 and G2/M. Through the use of a viable proteasome mutant, we confirm that the levels of Rev1 protein are dependent on proteasome-mediated degradation. The accumulation of higher migrating forms of Rev1 under certain conditions shows that the degradation of Rev1 is possibly directed through the addition of a polyubiquitination signal or another modification. These results support a model that proteasomal degradation acts as a regulatory system of mutagenic TLS mediated by Rev1.CI - Copyright A(c) 2010 Elsevier B.V. All rights reserved.

Reference Type
Journal Article
Authors
Wiltrout ME, Walker GC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference