Take our Survey

Reference: Orlando K, et al. (2011) Exo-endocytic trafficking and the septin-based diffusion barrier are required for the maintenance of Cdc42p polarization during budding yeast asymmetric growth. Mol Biol Cell 22(5):624-33

Reference Help

Abstract


Cdc42p plays a central role in asymmetric cell growth in yeast by controlling actin organization and vesicular trafficking. However, how Cdc42p is maintained specifically at the daughter cell plasma membrane during asymmetric cell growth is unclear. We have analyzed Cdc42p localization in yeast mutants defective in various stages of membrane trafficking by fluorescence microscopy and biochemical fractionation. We found that two separate exocytic pathways mediate Cdc42p delivery to the daughter cell. Defects in one of these pathways result in Cdc42p being re-routed through the other. In particular, the pathway involving trafficking through endosomes may couple Cdc42p endocytosis from, and subsequent re-delivery to, the plasma membrane to maintain Cdc42p polarization at the daughter cell. While the endo-exocytotic coupling is necessary for Cdc42p polarization, it is not sufficient to prevent the lateral diffusion of Cdc42p along the cell cortex. A barrier function conferred by septins is required to counteract the dispersal of Cdc42p and maintain its localization in the daughter cell, but has no effect on the initial polarization of Cdc42p at the presumptive budding site before symmetry breaking. Collectively, membrane trafficking and septins function synergistically to maintain the dynamic polarization of Cdc42p during asymmetric growth in yeast.

Reference Type
Journal Article
Authors
Orlando K, Sun X, Zhang J, Lu T, Yokomizo L, Wang P, Guo W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference