Take our Survey

Reference: Iffland A, et al. (2001) Changing the substrate specificity of cytochrome c peroxidase using directed evolution. Biochem Biophys Res Commun 286(1):126-32

Reference Help

Abstract

Cytochrome c peroxidase (CCP) from Saccharomyces cerevisiae was subjected to directed molecular evolution to generate mutants with increased activity against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Using a combination of DNA shuffling and saturation mutagenesis, mutants were isolated which possessed more than 20-fold increased activity against ABTS and a 70-fold increased specificity toward ABTS compared to the natural substrate. In contrast, activities against another small organic molecule, guaiacol, were not significantly affected. Mutations at residues Asp224 and Asp217 were responsible for this increase in activity. These two residues are located on the surface of the protein and not in the direct vicinity of the distal cavity of the peroxidase, where small organic substrates are believed to be oxidized. Mutations at position Asp224 also lead to an increased amount of the active holoenzyme expressed in Escherichia coli, favoring the selection of these mutants in the employed colony screen. Possible explanations for the effect of the mutations on the in vitro activity of CCP as well as the increased amount of holoenzyme are discussed.CI - Copyright 2001 Academic Press.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Iffland A, Gendreizig S, Tafelmeyer P, Johnsson K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference