Take our Survey

Reference: Savenkova MI, et al. (2001) Expression, purification, characterization, and NMR studies of highly deuterated recombinant cytochrome c peroxidase. Biochemistry 40(40):12123-31

Reference Help

Abstract

Two forms of extensively deuterated S. cerevisiae cytochrome c peroxidase (CcP; EC 1.11.1.5) have been overexpressed in E. coli by growth in highly deuterated medium. One of these ferriheme enzyme forms (recDCcP) was produced using >97% deuterated growth medium and was determined to be approximately 84% deuterated. The second form [recD(His)CcP] was grown in the same highly deuterated medium that had been supplemented with excess histidine (at natural hydrogen isotope abundance) and was also approximately 84% deuterated. This resulted in direct histidine incorporation without isotope scrambling. Both of these enzymes along with the corresponding recombinant native CcP (recNATCcP), which was expressed in a standard medium with normal hydrogen isotope abundance, consisted of 294 amino acid polypeptide chains having the identical sequence to the yeast-isolated enzyme, without any N-terminal modifications. Comparative characterizations of all three enzymes have been carried out for the resting-state, high-spin forms and in the cyanide-ligated, low-spin forms. The primary physical methods employed were electrophoresis, UV-visible spectroscopy, hydrogen peroxide reaction kinetics, mass spectrometry, and (1)H NMR spectroscopy. The results indicate that high-level deuteration does not significantly alter CcP's reactivity or spectroscopy. As an example of potential NMR uses, recDCcPCN and recD(His)CcPCN have been used to achieve complete, unambiguous, stereospecific (1)H resonance assignments for the heme hyperfine-shifted protons, which also allows the heme side chain conformations to be assessed. Assigning these important active-site protons has been an elusive goal since the first NMR spectra on this enzyme were reported 18 years ago, due to a combination of the enzyme's comparatively large size, paramagnetism, and limited thermal stability.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Savenkova MI, Satterlee JD, Erman JE, Siems WF, Helms GL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference