Reference: Hernández H, et al. (2011) Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 404(3):859-64

Reference Help

Abstract


The yeast Saccharomyces cerevisiae is able to sense the availability and quality of nitrogen sources and the intrinsic variation of amino acid disponibility for protein synthesis. When this yeast is provided with secondary nitrogen sources, transcription of genes encoding enzymes involved in their catabolism is elicited through the action of Gln3, which constitutes the main activator of the Nitrogen Catabolite Repression network (NCR). Activation of genes encoding enzymes involved in the amino acid biosynthetic pathways is achieved through the action of the GCN4-encoded transcriptional modulator whose transcriptional activation is induced at the translational level by limitation for any amino acid. Thus the role of each one of these activators had been secluded to either catabolic or biosynthetic pathways. However, some observations have suggested that under peculiar physiological conditions, Gln3 and Gcn4 could act simultaneously in order to contemporaneously increase expression of both sets of genes. This paper addresses the question of whether Gln3 and Gcn4 cooperatively determine expression of their target genes. Results presented herein show that induced expression of catabolic and biosynthetic genes when cells are grown under nitrogen derepressive conditions and amino acid deprivation is dependent on the concurrent action of Gln3 and Gcn4, which form part of a unique transcriptional complex. We propose that the combination of Gln3 and Gcn4 results in the constitution of a hybrid modulator which elicits a novel transcriptional response, not evoked when these modulators act in a non-combinatorial fashion.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hernández H, Aranda C, Riego L, González A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference