Take our Survey

Reference: Lai YJ, et al. (2011) Genetic requirements and meiotic function of phosphorylation of the yeast axial element protein red1. Mol Cell Biol 31(5):912-23

Reference Help

Abstract


The synaptonemal complex (SC) is a meiosis-specific tripartite structure that forms between two homologous chromosomes: it consists of a central region and two parallel lateral elements. Lateral elements are also called axial elements prior to synapsis. In Saccharomyces cerevisiae, Red1, Hop1, and Mek1 are structural components of axial/lateral elements. The red1/mek1/hop1 mutants all exhibit reduced levels of interhomolog recombination and produce no viable spores. Red1 is a phosphoprotein. Several earlier reports proposed that phosphorylated Red1 plays important roles in meiosis, including in signaling meiotic DNA damages or in preventing exit from the pachytene chromosomes. We report here that phosphorylation of Red1 is carried out in CDC28-dependent and CDC28-independent manners. In contrast to previous results, we found Red1 phosphorylation to be independent of meiotic DNA recombination, the Mec1/Tel1 DNA damage checkpoint kinases, and the Mek1 kinase. To functionally validate phosphorylation of Red1, we mapped the phosphorylation sites on this protein. A red1(14A) mutant showing no detectable Red1 phosphorylation did not exhibit decreased sporulation efficiency, defects in viable spore production, or defects in meiotic DNA damage checkpoints. Thus, our results suggest that phosphorylation of Red1 is not essential for its functions in meiosis.

Reference Type
Journal Article
Authors
Lai YJ, Lin FM, Chuang MJ, Shen HJ, Wang TF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference