Take our Survey

Reference: Bleve G, et al. (2011) Over-expression of functional Saccharomyces cerevisiae GUP1, induces proliferation of intracellular membranes containing ER and Golgi resident proteins. Biochim Biophys Acta 1808(3):733-44

Reference Help

Abstract

High-level expression of the GUP1 gene in Saccharomyces cerevisiae resulted in the formation of proliferated structures, which hosted endoplasmic reticulum (ER), Golgi and itinerant proteins. The GUP1 over-expression enhanced ER biogenesis, as shown by the coordinated increased transcription rate of genes involved in both ER and Golgi metabolism and in phospholipids biosynthesis. The formation of Gup1-induced proliferation revealed that it depended on an intact unfolded protein response, because their assembly was reported to be lethal to yeast strains unable to initiate the UPR (Unfolded Protein Response) pathway. GUP1 over-expression affected global ER and Golgi structure and resulted in the biogenesis of novel membrane arrays with Golgi and ER hybrid composition. In fact, a number of ER and Golgi resident proteins together with itinerant proteins that normally cycle between ER and Golgi, were localized in the proliferated stacked membranes. The described assembling of novel membrane structures was affected by the functionality of the Gup1 O-acyltransferase domain, which regulates the Gup1 protein role as remodelase in the glycosylphosphatidylinositol (GPI) anchored proteins biosynthesis. To our knowledge, we presented the first evidence of sub cellular modifications in response over-expression of a GPI-anchor remodelase in S. cerevisiae.CI - Copyright (c) 2010. Published by Elsevier B.V.

Reference Type
Journal Article
Authors
Bleve G, Di Sansebastiano GP, Grieco F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference