Take our Survey

Reference: Rice C, et al. (2010) A role for MGA2, but not SPT23, in activation of transcription of ERG1 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 403(3-4):293-7

Reference Help

Abstract

The SaccharomycescerevisiaeMGA2 gene encodes an important regulator of unsaturated fatty acid production, by controlling transcription and mRNA stability of OLE1, the gene encoding the Delta9 fatty acid desaturase. Lipid composition studies indicated that the mga2Delta strain contains elevated relative amounts of squalene when compared to wild-type cells. The deletion of the MGA2 homologue SPT23 did not impact squalene levels. To explore the role of MGA2 in the regulation of sterol synthesis, the transcription of the ERG1 gene, which encodes squalene epoxidase, was studied using an ERG1 promoter-lacZ reporter gene construct. We report here that in addition to MGA2's role in regulation of unsaturated fatty acids, MGA2 is required for full basal expression of ERG1. Mga2p was found to be controlled by a novel regulator in its activation of ERG1, as neither unsaturated fatty acids nor cobalt affected ERG1 expression, as had previously been shown for Mga2p's regulation of OLE1. Further, response to miconazole treatment, which inhibits production of ergosterol at a later step in the sterol biosynthetic pathway and results in up-regulation of several genes in ergosterol synthesis, was not affected in the mga2Delta mutant. In each case, the spt23Delta mutant strain shows similar ERG1 expression to wild-type cells, while the mga2Delta/spt23Delta strain shows reduced ERG1 expression, comparable to the mga2Delta, suggesting that the role of regulation of ERG1 transcription is unique to Mga2p.CI - Copyright (c) 2010 Elsevier Inc. All rights reserved.

Reference Type
Journal Article
Authors
Rice C, Cooke M, Treloar N, Vollbrecht P, Stukey J, McDonough V
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference