Take our Survey

Reference: Cohen E (2001) Chitin synthesis and inhibition: a revisit. Pest Manag Sci 57(10):946-50

Reference Help

Abstract


Chitin is an abundant biologically important aminopolysaccharide composed of N-acetyl-D-glucosamine units. Individual polymers, which are synthesized intracellularly by chitin synthase (CS), a membrane-bound glycosyl transferase, are translocated across the plasma membrane and coalesce to form rigid crystallites. These crystallites, inter alia, are integral parts of septa and cell walls in yeast and filamentous fungi, respectively, and of cuticles in invertebrates, notably crustaceans and insects. Despite decades of intensive research, many events associated with the complexity of chitin formation and deposition are still obscure, or only partially understood. The list includes the hormonal control of CS at the transcriptional and translational levels as well as the post-translational CS packaging; trafficking and guidance of CS clusters to proper sites in the cells and their intricate insertion into the plasma membranes; activation of the catalytic step and its control or modulation; and translocation of chitin chains across cell membranes, their orientation, fibrillogenesis and association with other extracellular structural components such as polysaccharides (fungi) and cuticular proteins (insects). Also the precise biochemical lesions inflicted by CS inhibitors, such as the acylurea insect growth regulators, are largely unclear. The recent isolation and sequencing of insect CS genes should help in elucidating various aspects of chitin biochemistry and inhibition. In particular, the large number of transmembrane segments, characteristic of the insect CS, are speculated to be involved in chitin translocation and are expected to shed light on the mode of action of acylurea insecticides.

Reference Type
Journal Article | Review
Authors
Cohen E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference