Take our Survey

Reference: Hosur R, et al. (2011) iWRAP: An Interface Threading Approach with Application to Prediction of Cancer-Related Protein-Protein Interactions. J Mol Biol 405(5):1295-310

Reference Help

Abstract


Current homology modeling methods for predicting protein-protein inter- actions (PPIs) have difficulty in the "twilight zone" (<40%) of sequence iden- tities. Threading methods extend coverage further into the twilight zone by aligning primary sequences for a pair of proteins to a best-fit template com- plex to predict an entire three-dimensional structure. We introduce a thread- ing approach, iWRAP, which focuses on only the protein interface. Our ap- proach combines a novel linear programming formulation for interface align- ment with a boosting classifier for interaction prediction. We demonstrate its efficacy on SCOPPI, a classification of PPIs in the Protein Databank, and on the entire yeast genome. iWRAP provides significantly improved prediction of PPIs and their interfaces in stringent cross-validation on SCOPPI. Further- more, by combining our predictions with a full-complex threader, we achieve coverage of 13% for the yeast PPIs, which is close to a 50% increase over previous methods at a higher sensitivity. As an application, we effectively combine iWRAP with genomic data to identify novel cancer related genes involved in chromatin remodeling, nucleosome organization and ribonuclear complex assembly. iWRAP is available at http://iwrap.csail.mit.edu.CI - Copyright (c) 2010 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article
Authors
Hosur R, Xu J, Bienkowska J, Berger B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference