Take our Survey

Reference: Vergara SV, et al. (2011) Early Recruitment of AU-Rich Element-Containing mRNAs Determines Their Cytosolic Fate during Iron Deficiency. Mol Cell Biol 31(3):417-29

Reference Help

Abstract

The yeast Cth2 protein is a CX8CX5CX3H tandem zinc finger protein that binds AU-rich Element (ARE)-containing transcripts to enhance their decay in response to iron deficiency. Mammalian members of this family of proteins are known to undergo nucleocytoplasmic shuttling, but little is known about the role of shuttling in the mechanism of ARE-dependent mRNA decay. Here we demonstrate that, as its mammalian homologues, Cth2 is a nucleocytoplasmic shuttling protein whose nuclear export depends on mRNA transport to the cytosol. The nuclear import information of Cth2 is contained within its tandem zinc finger domain, but it is independent of mRNA-binding function. Moreover, we also demonstrate that nucleocytoplasmic shuttling of Cth2 requires active transcription and that disruption of shuttling leads to defects in Cth2 function in mRNA decay under Fe-deficiency. Taken together, our data suggest that under conditions of Fe-deficiency Cth2 travels into the nucleus to recruit target mRNAs, perhaps co-transcriptionally, that are destined for cytosolic degradation as part of the mechanism of adaptation to growth under Fe-limitation. These data also suggest an important role for nucleocytoplasmic shuttling in this conserved family of proteins in the mechanism of ARE-mediated mRNA decay.

Reference Type
Journal Article
Authors
Vergara SV, Puig S, Thiele DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference