Take our Survey

Reference: Liu H, et al. (2011) The cik1/kar3 motor complex is required for the proper kinetochore-microtubule interaction after stressful DNA replication. Genetics 187(2):397-407

Reference Help

Abstract

In budding yeast Saccharomyces cerevisiae, kinetochores are attached by microtubules during most of the cell cycle, but the duplication of centromeric DNA disassembles kinetochores, which results in a brief dissociation of chromosomes from microtubules. Kinetochore assembly is delayed in the presence of hydroxyurea, a DNA synthesis inhibitor, presumably due to the longer time required for centromeric DNA duplication. Some kinetochore mutants are sensitive to stressful DNA replication as these kinetochore proteins become essential for the establishment of the kinetochore-microtubule interaction after treatment with hydroxyurea. To identify more genes required for the efficient kinetochore-microtubule interaction under stressful DNA replication conditions, we carried out a genome-wide screen for yeast mutants sensitive to hydroxyurea. From this screen, cik1 and kar3 mutants were isolated. Kar3 is the minus-end-directed motor protein; Cik1 binds to Kar3 and is required for its motor function. After exposure to hydroxyurea, cik1 and kar3 mutant cells exhibit normal DNA synthesis kinetics, but they display a significant anaphase entry delay. Our results indicate that cik1 cells exhibit defect in the establishment of chromosome bipolar attachment in the presence of hydroxyurea. Since Kar3 has been show to drive the poleward chromosome movement along microtubules, our data support the possibility that this chromosome movement promotes chromosome bipolar attachment after stressful DNA replication.

Reference Type
Journal Article
Authors
Liu H, Jin F, Liang F, Tian X, Wang Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference