Reference: Muller F, et al. (2002) Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex. Biochemistry 41(25):7866-74

Reference Help

Abstract


The cytochrome (cyt) bc(1) complex is central to energy transduction in many species. Most investigators now accept a modified Q-cycle as the catalytic mechanism of this enzyme. Several thermodynamically favorable side reactions must be minimized for efficient functioning of the Q-cycle. Among these, reduction of oxygen by the Q(o) site semiquinone to produce superoxide is of special pathobiological interest. These superoxide-producing bypass reactions are most notably observed as the antimycin A- or myxothiazol-resistant reduction of cyt c. In this work, we demonstrate that these inhibitor-resistant cyt c reductase activities are largely unaffected by removal of O(2) in the isolated yeast cyt bc(1) complex. Further, increasing O(2) tension 5-fold stimulated the antimycin A-resistant reduction by a small amount ( approximately 25%), while leaving the myxothiazol-resistant reduction unchanged. This most likely indicates that the rate-limiting step in superoxide production is the formation of a reactive species (probably a semiquinone), capable of rapid O(2) reduction, and that in the absence of O(2) this species can reduce cyt c by some other pathway. We suggest as one possibility that a semiquinone escapes from the Q(o) site and reduces either O(2) or cyt c directly. The small increase in antimycin A-resistant cyt c reduction rate at high O(2) can be explained by the accumulation of a low concentration of a semiquinone inside the Q(o) site. Under aerobic conditions, addition of saturating levels of superoxide dismutase (SOD) inhibited 50% of cyt c reduction in the presence of myxothiazol, implying that essentially all bypass reactions occur with the production of superoxide. However, SOD inhibited only 35% of antimycin A-resistant cyt c reduction, suggesting the presence of a second, slower bypass reaction that does not reduce O(2). Given that myxothiazol blocks cyt b reduction whereas antimycin A promotes it, we propose that this second bypass occurs by reduction of the Q(o) site semiquinone by prereduced cyt b(L).

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Muller F, Crofts AR, Kramer DM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference