Reference: Harris CM, et al. (2002) Modulation of the zinc(II) center in protein farnesyltransferase by mutagenesis of the zinc(II) ligands. Biochemistry 41(33):10554-62

Reference Help

Abstract


Protein farnesyltransferase (PFTase) is a zinc-containing metalloenzyme that catalyzes the alkylation of cysteine (C) in protein substrates containing a C-terminal "CaaX" motif by farnesyl diphosphate (FPP). In yeast PFTase Zn(II) is coordinated to D307, C309, and H363 in the beta-subunit. The inner coordination sphere of the metal also contains a water molecule to give a net charge of 0 for the tetracoordinate Zn(II) center. When the protein substrate binds, the water molecule is replaced by the thiol of the cysteine residue, and the thiol is deprotonated to generate a Zn(II)-stabilized thiolate in the PFTase.FPP.protein ternary complex for the ensuing prenyl transfer reaction. An expression system was constructed for yeast PFTase containing a His(6) tag at the C-terminus of the beta-subunit to facilitate purification of the wild-type enzyme and site-directed mutants. The amino acids that coordinate Zn(II) were substituted to give a series of mutant PFTases with net charges of +1, 0, -1, and -2 at the Zn(II) center of the ternary enzyme.substrate complexes. Wild-type PFTase and the site-directed mutants were purified as alpha,beta-heterodimers, and each was found to contain an equivalent of Zn(II). All of the mutants were less reactive than wt PFTase (net charge of -1), with the greatest losses of activity seen for the mutants with net charges of 0 and +1. Equilibrium binding experiments with dGCVIA peptide and an unreactive analogue of FPP, (E,E)-2-[2-oxo-2-[[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]amino]ethyl]phosphonate (FNP), established that all of the mutants bound an equivalent of the peptide substrate. Like wt PFTase, the pH dependence of K(D) for the mutants did not change significantly between pH 5 and pH 9, indicating that pK(A)s for the thiol moiety in the (mutant PFTase).FNP.peptide complexes were <5. dGSVIA and dG(beta-NH2-Ala)VIA, where the sulfhydryl moiety was replaced by hydroxyl and amino groups, respectively, were not substrates. These experiments suggest a direct relationship between the net charge of the Zn(II) center in PFTase and the reactivity of the peptide thiolate that is alkylated by FPP.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Harris CM, Derdowski AM, Poulter CD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference