Take our Survey

Reference: Verdicchio MP and Kim S (2011) Identifying targets for intervention by analyzing basins of attraction. Pac Symp Biocomput :350-61

Reference Help

Abstract

Motivation: A grand challenge in the modeling of biological systems is the identification of key variables which can act as targets for intervention. Good intervention targets are the "key players" in a system and have significant influence over other variables; in other words, in the context of diseases such as cancer, targeting these variables with treatments and interventions will provide the greatest effects because of their direct and indirect control over other parts of the system. Boolean networks are among the simplest of models, yet they have been shown to adequately model many of the complex dynamics of biological systems. Often ignored in the Boolean network model, however, are the so called basins of attraction. As the attractor states alone have been shown to correspond to cellular phenotypes, it is logical to ask which variables are most responsible for triggering a path through a basin to a particular attractor. Results: This work claims that logic minimization (i.e. classical circuit design) of the collections of states in Boolean network basins of attraction reveals key players in the network. Furthermore, we claim that the key players identified by this method are often excellent targets for intervention given a network modeling a biological system, and more importantly, that the key players identified are not apparent from the attractor states alone, from existing Boolean network measures, or from other network measurements. We demonstrate these claims with a well-studied yeast cell cycle network and with a WNT5A network for melanoma, computationally predicted from gene expression data.

Reference Type
Journal Article
Authors
Verdicchio MP, Kim S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference