Take our Survey

Reference: Herzog B, et al. (2011) A Feedback Circuit between Transcriptional Activation and Self-Destruction of Gcn4 Separates Its Metabolic and Morphogenic Response in Diploid Yeasts. J Mol Biol 405(4):909-25

Reference Help

Abstract

The basic zipper Gcn4 protein activates transcription in the yeast S. cerevisiae in response to amino acid starvation. This includes numerous metabolic genes of amino acid or purine biosynthesis and the developmental cell-surface flocculin gene FLO11, which is required for diploid pseudohyphae formation and for adhesion upon nutrient starvation. We separated the metabolic from the developmental function by screening for GCN4 alleles that allow growth during amino acid starvation, but are impaired in adhesion and are unable to form pseudohyphae. The identified Gcn4(L267S) variant carries an amino acid substitution in the third of the four conserved leucines of the zipper dimerization domain. This mutation abolished FLO11 expression and results in reduced but sufficient transcriptional activity for amino acid biosynthetic genes. The Leu267Ser substitution impairs Gcn4 homodimer formation and a significantly more stable protein than the wild type protein. A helix breaker substitution in Leu253 results in a transcriptionally inactive, but highly stable protein variant. This is due to a feedback circuit between transcriptional activity of Gcn4 and its own stability, which depends on the Gcn4-controlled cyclin PCL5. Gcn4(L253G) reduces the expression of Pcl5 and therefore reduces its own degradation. This self-controlled buffer system to restrict transcriptional activity results in a reciprocal correlation between Gcn4 transcriptional activity and protein stability.CI - Copyright (c) 2010. Published by Elsevier Ltd.

Reference Type
Journal Article
Authors
Herzog B, Streckfuss-Bomeke K, Braus GH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference