Reference: Josse L, et al. (2011) Transcriptomic and phenotypic analysis of the effects of T-2 toxin on Saccharomyces cerevisiae: evidence of mitochondrial involvement. FEMS Yeast Res 11(1):133-50

Reference Help

Abstract


At 5 mug mL(-1), T-2 toxin significantly upregulated the transcription of 281 genes and downregulated 86. Strongly upregulated genes included those involved in redox activity, mitochondrial functions, the response to oxidative stress, and cytoplasmic rRNA transcription and processing. Highly repressed genes have roles in mitochondrial biogenesis, and the expression and stability of cytoplasmic rRNAs. T-2 toxin inhibition of growth was greater in a medium requiring respiration, and was antagonized by antioxidants. T-2 toxin treatment induced reactive oxygen species, caused nucleolytic damage to DNA, probably mitochondrial, and externalization of phosphatidylserine. Deletion mutations causing respiratory deficiency substantially increased toxin tolerance, and deletion of some TOR (target of rapamycin) pathway genes altered T-2 toxin sensitivity. Deletion of FMS1, which plays an indirect role in cytoplasmic protein synthesis, markedly increased toxin tolerance. Overall, the findings suggest that T-2 toxin targets mitochondria, generating oxy-radicals and repressing mitochondrial biogenesis genes, thus inducing oxidative stress and redox enzyme genes, and triggering changes associated with apoptosis. The large transcriptional changes in genes needed for rRNA transcription and expression and the effects of deletion of FMS1 are also consistent with T-2 toxin damage to the cytoplasmic translational mechanism, although it is unclear how this relates to the mitochondrial effects.CI - (c) 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

Reference Type
Journal Article
Authors
Josse L, Li X, Coker RD, Gourlay CW, Evans IH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference