Reference: Mulcahy P, et al. (2002) Application of kinetic-based biospecific affinity chromatographic systems to ATP-dependent enzymes: studies with yeast hexokinase. Anal Biochem 309(2):279-92

Reference Help

Abstract


This study is concerned with the development of kinetic-based bioaffinity chromatographic systems for purification of ATP-dependent kinases, with a particular focus on the allosteric yeast hexokinase enzyme (EC 2.7.1.1). Synthesis and characterization of highly substituted N(6)-linked and S(6)-linked immobilized ATP derivatives are described using a rapid solid-phase modular approach. Evaluation of the new immobilized ATP derivatives has been carried out using model chromatographic studies with yeast hexokinase, employing specific substrate analogues (N-acetyl-D-glucosamine and suramin) to promote biospecific adsorption, in the presence and absence of citrate (a so-called allosteric activator of hexokinase activity). In this paper, successful bioaffinity chromatography systems were developed for yeast hexokinase and, as a result, interesting binding and catalytic properties of the enzyme were highlighted and explored. The overall results confirm the potential for extrapolation of the kinetic locking-on tactic, a general kinetic-based bioaffinity approach already developed for the NAD(P)(+)-dependent dehydrogenases, to ATP/ADP-dependent enzymes. However, in view of the enhancement of the intrinsic ATPase activity of hexokinase with glucosamine derivatives, and the coincidental hydrolysis of immobilized ATP to immobilized ADP, future developments necessary to support adaptation of the approach to ATP-dependent enzymes are discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Mulcahy P, O'Flaherty M, Jennings L, Griffin T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference