Take our Survey

Reference: Voziyanov Y, et al. (2003) Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol 326(1):65-76

Reference Help

Abstract

The Flp protein from Saccharomyces cerevisiae is one of the site-specific tyrosine family recombinases that are used widely in genomic engineering. As a first step towards mediating directed DNA rearrangements at non-native Flp recombination targets (mFRTs), we have evolved three separate groups of Flp variants that preferentially act on mFRTs containing substitutions at the first, seventh or both positions of the Flp-binding elements. The variants that recombine the double-mutant mFRT contain a subset of the mutations present in those that are active on the single-mutant mFRTs, plus additional mutations. Specificity for and discrimination between target sites, effected primarily by amino acid residues that contact DNA, can be modulated by those that do not interact with DNA or with a DNA-contacting residue. The degree of modulation can range from relaxed DNA specificity to almost completely altered specificity. Our results suggest that combined DNA shuffling and mutagenesis of libraries of Flp variants active on distinct mFRTs can yield variants that can recombine mFRTs containing combinations of the individual mutations.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference