Reference: Salema-Oom M, et al. (2011) Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression. J Appl Microbiol 110(1):364-74

Reference Help

Abstract


Aims: We undertook to improve an industrial Saccharomyces cerevisiae strain by derepressing it for maltose utilization in the presence of high glucose concentrations. Methods and Results: A mutant was obtained from an industrial S. cerevisiae strain following random UV mutagenesis and selection on maltose/5-thioglucose medium. The mutant acquired the ability to utilize glucose simultaneously with maltose and possibly also sucrose and galactose. Aerobic sugar metabolism was still largely fermentative, but an enhanced respirative metabolism resulted in a 31% higher biomass yield on glucose. Kinetic characterization of glucose transport in the mutant revealed the predominance of the high-affinity component. Northern blot analysis showed that the mutant strain expresses only the HXT6/7 gene irrespective of the glucose concentration in the medium, indicating a severe deregulation in the induction/repression pathways modulating HXT gene expression. Interestingly, maltose-grown cells of the mutant display inverse diauxy in a glucose/maltose mixture, preferring maltose to glucose. Conclusion: In the mutant here reported, the glucose transport step seems to be uncoupled from downstream regulation, because it seems to be unable to sense abundant glucose, via both repression and induction pathways. Significance and Impact of the Study: We report here the isolation of a S. cerevisiae mutant with a novel derepressed phenotype, potentially interesting for the industrial fermentation of mixed sugar substrates.CI - (c) 2010 The Authors. Journal of Applied Microbiology (c) 2010 The Society for Applied Microbiology.

Reference Type
Journal Article
Authors
Salema-Oom M, De Sousa HR, Assuncao M, Goncalves P, Spencer-Martins I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference