Take our Survey

Reference: Suh MH, et al. (2010) A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J Biol Chem 285(44):34027-38

Reference Help

Abstract

RNA capping enzyme (CE) is recruited specifically to RNA polymerase II (Pol II) transcription sites to facilitate cotranscriptional 5'-capping of pre-mRNA and other Pol II transcripts. The current model to explain this specific recruitment of CE to Pol II as opposed to Pol I and Pol III rests on the interaction between CE and the phosphorylated C-terminal domain (CTD) of Pol II largest subunit Rpb1 and more specifically between the CE nucleotidyltransferase domain and the phosphorylated CTD. Through biochemical and diffraction analyses, we demonstrate the existence of a distinctive stoichiometric complex between CE and the phosphorylated Pol II (Pol IIO). Analysis of the complex revealed an additional and unexpected polymerase-CE interface (PCI) located on the multihelical Foot domain of Rpb1. We name this interface PCI1 and the previously known nucleotidyltransferase/phosphorylated CTD interface PCI2. Although PCI1 and PCI2 individually contribute to only weak interactions with CE, a dramatically stabilized and stoichiometric complex is formed when PCI1 and PCI2 are combined in cis as they occur in an intact phosphorylated Pol II molecule. Disrupting either PCI1 or PCI2 by alanine substitution or deletion diminishes CE association with Pol II and causes severe growth defects in vivo. Evidence from manipulating PCI1 indicates that the Foot domain contributes to the specificity in CE interaction with Pol II as opposed to Pol I and Pol III. Our results indicate that the dual interface based on combining PCI1 and PCI2 is required for directing CE to Pol II elongation complexes.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Suh MH, Meyer PA, Gu M, Ye P, Zhang M, Kaplan CD, Lima CD, Fu J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference