Take our Survey

Reference: Lilie H, et al. (2011) Yeast hexokinase isoenzyme ScHxk2: stability of a two-domain protein with discontinuous domains. Protein Eng Des Sel 24(1-2):79-87

Reference Help

Abstract

The hexokinase isoenzyme 2 of Saccharomyces cerevisiae (ScHxk2) represents an archetype of a two-domain protein with the active site located in a cleft between the two domains. Binding of the substrate glucose results in a rigid body movement of the two domains leading to a cleft closure of the active site. Both domains of this enzyme are composed of discontinuous peptide sequences. This structural feature is reflected in the stability and folding of the ScHxk2 protein. Structural transitions induced by urea treatment resulted in the population of a thermodynamically stable folding intermediate, which, however, does not correspond to a molecule with one domain folded and the other unfolded. As demonstrated by different spectroscopic techniques, both domains are structurally affected by the partial denaturation. The intermediate possesses only 40% of the native secondary structural content and a substantial increase in the Stokes radius as judged by circular dichroism and dynamic light scattering analyses. One-dimensional (1)H NMR data prove that all tryptophan residues are in a non-native environment in the intermediate, indicating substantial changes in the tertiary structure. Still, the intermediate possesses quite a high stability for a transition intermediate of about DeltaG = -22 kJ mol(-1).

Reference Type
Journal Article
Authors
Lilie H, Bar D, Kettner K, Weininger U, Balbach J, Naumann M, Muller EC, Otto A, Gast K, Golbik R, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference