Reference: Gaczynska M, et al. (2003) Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 42(29):8663-70

Reference Help

Abstract


Substrate-specific inhibition of the proteasome has been unachievable despite great interest in proteasome inhibitors as drugs. Recent studies demonstrated that PR39, a natural proline- and arginine-rich antibacterial peptide, stimulates angiogenesis and inhibits inflammatory responses by specifically blocking degradation of IkappaBalpha and HIF-1alpha by the proteasome. However, molecular events involved in the PR39-proteasome interaction have not been elucidated. Here we show that PR39 is a noncompetitive and reversible inhibitor of the proteasome function. This effect is achieved by a unique allosteric mechanism allowing for specific inhibition of degradation of selected proteins without affecting total proteasome-dependent proteolysis. Atomic force microscopy (AFM) studies demonstrate that 20S and 26S proteasomes treated with PR39 or its derivatives exhibit serious perturbations in their structure and their normal allosteric movements. These effects are universal for proteasomes from yeast to human. The shortest functional sequence derived from PR39 still showing the allosteric inhibitory effect consists of eleven NH(2)-terminal residues containing essential three NH(2)-terminal arginines. The noncompetitive and reversible in vitro action of PR39 and its truncated derivatives is matched by the ability of the peptides to induce angiogenesis in vivo. We postulate that PR39 changes conformational dynamics of the proteasomes by interactions with the noncatalytic subunit alpha7 in a way that prevents the enzyme from cleaving the substrates of unique structural constraints.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Gaczynska M, Osmulski PA, Gao Y, Post MJ, Simons M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference