Reference: Stuart JW, et al. (2003) Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe). J Mol Biol 334(5):901-18

Reference Help

Abstract


Post-transcriptional modifications contribute chemistry and structure to RNAs. Modifications of tRNA at nucleoside 37, 3'-adjacent to the anticodon, are particularly interesting because they facilitate codon recognition and negate translational frame-shifting. To assess if the functional contribution of a position 37-modified nucleoside defines a specific structure or restricts conformational flexibility, structures of the yeast tRNA(Phe) anticodon stem and loop (ASL(Phe)) with naturally occurring modified nucleosides differing only at position 37, ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)), and ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)), were determined by NMR spectroscopy and restrained molecular dynamics. The ASL structures had similarly resolved stems (RMSD approximately 0.6A) of five canonical base-pairs in standard A-form RNA. The "NOE walk" was evident on the 5' and 3' sides of the stems of both RNAs, and extended to the adjacent loop nucleosides. The NOESY cross-peaks involving U(33) H2' and characteristic of tRNA's anticodon domain U-turn were present but weak, whereas those involving the U(33) H1' proton were absent from the spectra of both ASLs. However, ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) exhibited the downfield shifted 31P resonance of U(33)pGm(34) indicative of U-turns; ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) did not. An unusual "backwards" NOE between Gm(34) and A(35) (Gm(34)/H8 to A(35)/H1') was observed in both molecules. The RNAs exhibited a protonated A(+)(38) resulting in the final structures having C(32).A(+)(38) intra-loop base-pairs, with that of ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) being especially well defined. A single family of low-energy structures of ASL(Phe)-(Cm(32),Gm(34), m(1)G(37),m(5)C(40)) (loop RMSD 0.98A) exhibited a significantly restricted conformational space for the anticodon loop in comparison to that of ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) (loop RMSD 2.58A). In addition, the ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) average structure had a greater degree of similarity to that of the yeast tRNA(Phe) crystal structure. A comparison of the resulting structures indicates that modification of position 37 affects the accuracy of decoding and the maintenance of the mRNA reading frame by restricting anticodon loop conformational space.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Stuart JW, Koshlap KM, Guenther R, Agris PF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference