Take our Survey

Reference: Esteve-Zarzoso B, et al. (2004) Authentication and identification of Saccharomyces cerevisiae 'flor' yeast races involved in sherry ageing. Antonie Van Leeuwenhoek 85(2):151-8

Reference Help

Abstract

Yeasts involved in velum formation during biological ageing of sherry wine have to date been classified into four races of Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, rouxii) according to their abilities to ferment different sugars. It has been proposed that race succession during biological ageing is essential for the development of the organoleptical properties of sherry wines. In this work we studied the physiological characteristics, the molecular differentiation and the phylogenetic relationships of the four races employing type and reference strains from culture collections and natural environments. Using restriction analysis of the ribosomal region that includes the 5.8S rRNA gene and internal transcribed regions (5.8S-ITS) we were able to differentiate 'flor' and non-'flor' S. cerevisiae yeast strains. However, no correlation between fermentation profile, mitochondrial DNA restriction analysis or chromosomal profiles and these races was found. Moreover, sequences of the D1/D2 domain of the 26S rRNA gene and the 5.8S-ITS region from these strains were analysed and no genetic differences were noted suggesting that 'flor' yeast cannot be grouped into four different races and the four races are identified as S. cerevisiae. Since the yeasts isolated from velum in sherry wine present a unique 5.8S rRNA pattern different from the rest of the Saccharomyces cerevisiae strains we propose that they should be included as a single race or variety inside the S. cerevisiae taxon.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Esteve-Zarzoso B, Fernandez-Espinar MT, Querol A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference