Take our Survey

Reference: Moore SP, et al. (2004) Analysis of a Ty1-less variant of Saccharomyces paradoxus: the gain and loss of Ty1 elements. Yeast 21(8):649-60

Reference Help

Abstract

Because Ty elements transpose through an RNA intermediate, element accumulation through retrotransposition must be regulated or offset by element loss to avoid uncontrolled genome expansion. Here we examine the fate of Ty sequences in Saccharomyces strain 337, a strain that is reported to lack Ty1 and Ty2 elements, but contains remnant solo long terminal repeats (LTRs). Although strain 337 was initially classified as Saccharomyces cerevisiae, our work indicates that this strain is more closely related to S. paradoxus. Several degenerate Ty1 and Ty2 LTRs were mapped to the same insertion sites as full-length Ty1 and Ty2 elements in S. cerevisiae, suggesting that this strain lost Ty elements by LTR-LTR recombination. Southern analysis indicates that strain 337 also lacks Ty4 and Ty5 elements. We estimated the rates of element gain and loss in this strain by introducing a single transposition-competent Ty1 element. The results indicate that Ty1 retrotransposition occurs at a much higher rate than elimination, suggesting that copy-number-dependent co-factors or environmental conditions contribute to the loss of Ty elements in this genome.CI - Copyright 2004 John Wiley & Sons, Ltd.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Moore SP, Liti G, Stefanisko KM, Nyswaner KM, Chang C, Louis EJ, Garfinkel DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference