Take our Survey

Reference: Li Y, et al. (2010) Multiple metabolic signals influence GAL gene activation by modulating the interaction of Gal80p with the transcriptional activator Gal4p. Mol Microbiol 78(2):414-28

Reference Help

Abstract


Transcriptional status of the genes needed for galactose utilization in Saccharomyces cerevisiae is controlled by the interplay between the prototypical transcriptional activator Gal4p and the inhibitor protein Gal80p. Relief of the inhibition from Gal4p requires the interaction between Gal80p and the galactokinase paralog, Gal3p. Here, we present evidence that decrease in the intracellular levels of ATP or NADP(H) impairs the GAL gene expression. All these induction defects are rescued by overproducing Gal3p or producing Gal4p mutants with reduced interaction with Gal80p. We further demonstrate that removal of Gal80p from the GAL gene promoter is impaired in these mutants, and that NADP(H) cooperates with Gal3p in causing the dissociation of Gal80p from the in vitro preformed DNA-bound Gal80p-Gal4p complex. We also show that Gal80p is only partially removed from the GAL gene promoter in a mitochondria fusion-deficient mutant where the cotranscriptional mRNA processing is crippled. The efficient dissociation is restored by Gal4p mutants with altered interaction with Gal80p and is correlated with the recovered GAL gene expression. These results indicate that multiple metabolic signals exist to facilitate the efficient and appropriate dissociation of Gal80p from Gal4p by Gal3p to achieve the fully active state of Gal4p in the nucleus.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Li Y, Chen G, Liu W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference