Reference: Martins-Taylor K, et al. (2011) H2A.Z (Htz1) Controls the Cell-Cycle-Dependent Establishment of Transcriptional Silencing at Saccharomyces cerevisiae Telomeres. Genetics 187(1):89-104

Reference Help

Abstract


The establishment of transcriptional silencing in Saccharomyces cerevisiae requires progression through the cell cycle. We have previously found that transit through M-phase is necessary and sufficient to establish silencing at telomeres following induction of the Sir3 silencing factor. In this study we find that halting cell cycle progression in either G1 or at the beginning of M-phase limits the ability of Sir3 to associate with a telomere-linked reporter gene, and prevents the changes in histone modifications associated with gene repression. Deletion of genes coding for the histone variant H2A.Z (Htz1 in yeast) and histone acetyltransferase Sas2 abolish the cell cycle progression requirement for the establishment of silencing. Cells blocked in telophase (but not at metaphase) are also able to establish silencing. We show that H2A.Z binds to the promoter of our telomere-linked reporter gene, and that this binding diminishes in silenced cells. Finally, we observe a specific displacement of H2A.Z from chromatin in telophase-blocked cells, regardless of the silencing status of the reporter gene. These results suggest that the requirement for M-phase in the establishment of silencing may reflect a cell cycle regulated relaxation of heterochromatin barriers.

Reference Type
Journal Article
Authors
Martins-Taylor K, Sharma U, Rozario T, Holmes SG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference