Reference: Bowen S, et al. (2005) Patterns of polymorphism and divergence in stress-related yeast proteins. Yeast 22(8):659-68

Reference Help

Abstract


Yeast genomes contain variable number tandem repeats (VNTRs) within coding regions of DNA. A significant number of these genes are involved in cell rescue, defence and virulence and are regulated by genetic elements associated with stress. Alleles that encode variable length, single amino acid tracts, are mainly associated with transcription and proteins localized within the nucleus. Alleles that encode proteins containing oligopeptide repeats or minisatellites are over-represented in cell wall and extracellular space locations. Functional analysis of the latter group reveals that these proteins are involved in biogenesis of cellular components and in interaction with the cellular environment, especially in relation to stress resistance, heat shock response, temperature perception and adhesion. A significantly high number of these proteins have regions rich in threonine and/or serine that contain repeated sequences, variable in length within yeast species. DNA sequences encoding serine- and/or threonine-rich regions give rise to polymorphic alleles and therefore may confer a selective advantage to cells. We propose that these regions are the focus of mutational and recombination events that, when coupled with directed selection, may contribute to genetic variation within stress-related genes.CI - Copyright (c) 2005 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Bowen S, Roberts C, Wheals AE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference