Reference: Conconi A (2005) The yeast rDNA locus: a model system to study DNA repair in chromatin. DNA Repair (Amst) 4(8):897-908

Reference Help

Abstract


Most of the studies on the effect of chromatin structure and chromatin remodeling on DNA repair are based on in vitro reconstituted assays. In such experiments individual nucleosomes are either released by nuclease digestion of native chromatin fibers or are assembled from purified histones. Though reconstituted assays are valid approaches to follow NER in chromatin they are of somehow limited physiological relevance since single core particles do not exist in vivo [K. van Holde, J. Zlatanova, The nucleosome core particle: does it have structural and physiological relevance? Bioessays 21 (1999) 776-778]. This is particularly true for studies involving core histones tails, as in their natural chromatin context histones tails participate in interactions that are not necessarily present in vitro [J.C. Hansen, C. Tse, A.P. Wolffe, Structure and function of the core histone N-termini: more than meets the eye, Biochemistry 37 (1998) 17637-17641; J.J. Hayes, J.C. Hansen, Nucleosomes and chromatin fiber, Curr. Opin. Genet. Dev. 11 (2001) 124-129]. Indeed it was found that human DNA ligase I has the capability to ligate a nick on the surface of a 215bp nucleosome but not a nick in a nucleosome lacking linker DNA, possibly because of forced interactions between histone tails and core DNA present in the latter complex [D.R. Chafin, J.M. Vitolo, L.A. Henricksen, B.A. Bambara, J.J. Hayes, Human DNA ligase I efficiently seals nicks in nucleosomes, EMBO J. 19 (2000) 5492-5501]. In addition, chromatin remodeling could also occur in the higher ordered folding of chromatin and involve multiple arrays of nucleosomes [P.J. Horn, C.L. Peterson, Chromatin higher order folding: wrapping up transcription, Science 297 (2002) 1824-1827]. By studying the chromatin structure of ribosomal genes in yeast, our knowledge of the fate of nucleosomes during transcription and DNA replication has improved considerably [R. Lucchini, J.M. Sogo, The dynamic structure of ribosomal RNA gene chromatin, in: M.R. Paule (Ed.), Transcription of Ribosomal RNA Genes by Eukaryotic RNA Polymerase I, Springer-Verlag/R.G. Landes Company, 1998, pp. 254-276]. How nuclear processes such as DNA repair take place in chromatin is still largely unknown, and in this review I discuss how the yeast rDNA locus may be exploited to investigate DNA repair and chromatin modification in vivo.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Conconi A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference