Reference: Wu C and Travers A (2005) Relative affinities of DNA sequences for the histone octamer depend strongly upon both the temperature and octamer concentration. Biochemistry 44(43):14329-34

Reference Help

Abstract


Using a novel competition assay to determine the relative strength of different histone octamer-binding sites, we have compared three natural and two synthetic sites. We show that the relative affinities of these sites for the histone octamer depend upon both the temperature and octamer concentration. In particular, under certain conditions, a natural octamer-binding site from a yeast promoter outcompetes a synthetic sequence of comparable affinity to the strongest previously described positioning sequence. Under other conditions, this synthetic sequence is the preferred octamer ligand. We infer that sequence selection by the histone octamer depends strongly upon both the sequence-dependent anisotropy of DNA bending and on DNA deformability and that these parameters may contribute differently to nucleosome formation. These findings indicate that previous studies designed to identify strong octamer-binding sites may fail to select some natural strong binding sites.

Reference Type
Journal Article | Comparative Study
Authors
Wu C, Travers A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference