Take our Survey

Reference: Algire MA, et al. (2005) Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol Cell 20(2):251-62

Reference Help

Abstract

Irreversible GTP hydrolysis by eIF2 is a critical step in translation initiation in eukaryotes because it is thought to commit the translational machinery to assembling the ribosomal complex at the selected point in the mRNA. Our quantitative analysis of the steps and interactions involved in activating GTP hydrolysis by eIF2 during translation initiation in vitro indicates that a structural rearrangement in the 43S preinitiation complex activates it to become fully competent to hydrolyze GTP. Contrary to the prevailing model, release of inorganic phosphate after GTP hydrolysis by eIF2, not hydrolysis itself, is controlled by recognition of the AUG codon. Release of P(i), which makes GTP hydrolysis irreversible, appears to be controlled by the AUG-dependent dissociation of eIF1 from the preinitiation complex.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Algire MA, Maag D, Lorsch JR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference