Take our Survey

Reference: Xia Y, et al. (2006) Integrated prediction of the helical membrane protein interactome in yeast. J Mol Biol 357(1):339-49

Reference Help

Abstract


At least a quarter of all genes in most genomes contain putative transmembrane (TM) helices, and helical membrane protein interactions are a major component of the overall cellular interactome. However, current experimental techniques for large-scale detection of protein-protein interactions are biased against membrane proteins. Here, we define protein-protein interaction broadly as co-complexation, and develop a weighted-voting procedure to predict interactions among yeast helical membrane proteins by optimally combining evidence based on diverse genome-wide information such as sequence, function, localization, abundance, regulation, and phenotype. We use logistic regression to simultaneously optimize the weights of all evidence sources for best discrimination based on a set of known helical membrane protein interactions. The resulting integrated classifier not only significantly outperforms classifiers based on any single genomic feature, but also does better than a benchmark Naive Bayes classifier (using a simplifying assumption of conditional independence among features). Finally, we apply the optimized classifier genome-wide, and construct a comprehensive map of predicted helical membrane protein interactome in yeast. This can serve as a guide for prioritizing further experimental validation efforts.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Xia Y, Lu LJ, Gerstein M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference