Reference: Wu HY, et al. (2010) Mek1 kinase governs outcomes of meiotic recombination and the checkpoint response. Curr Biol 20(19):1707-16

Reference Help

Abstract

BACKGROUND: Homologous recombination promotes proper segregation of chromosomes during meiosis. Programmed double-strand breaks (DSBs) initiate recombination and are repaired preferentially using the homolog rather than the sister chromatid template. In yeast, activation of Mek1 kinase upholds this bias. Mek1 is also a proposed effector kinase in the recombination checkpoint that responds to aberrant DNA and/or axis structures. Elucidating a role for Mek1 in this checkpoint has been difficult, because a mek1 null mutation causes rapid repair of DSBs using a sister chromatid, thus bypassing formation of checkpoint-activating lesions. Here we analyzed a MEK1 gain-of-function allele to test if it would enhance interhomolog bias and/or the checkpoint response. RESULTS: When Mek1 activation was artificially maintained through glutathione S-transferase-mediated dimerization, there was an enhanced skew toward interhomolog recombination and reduction of intersister events, including multichromatid joint molecules. Increased interhomolog events were specifically repaired as noncrossovers rather than as crossovers. Ectopic Mek1 dimerization was also sufficient to impose interhomolog bias in the absence of recombination checkpoint functions, thereby uncoupling these two processes. Finally, the stringency of the checkpoint response was enhanced in mutants with weak recombination defects by blocking prophase exit in a subset of cells in which arrest is not absolute. CONCLUSIONS: We propose that Mek1 plays dual roles during meiotic prophase I by phosphorylating targets directly involved in the recombination checkpoint, as well as targets involved in sister chromatid recombination. We discuss how regulation of pachytene exit by Mek1 or similar kinases could influence checkpoint stringency, which may differ among species and between sexes.CI - Copyright (c) 2010 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article
Authors
Wu HY, Ho HC, Burgess SM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference