Take our Survey

Reference: Martin DG, et al. (2006) Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin. Mol Cell Biol 26(8):3018-28

Reference Help

Abstract

The SAS3-dependent NuA3 histone acetyltransferase complex was originally identified on the basis of its ability to acetylate histone H3 in vitro. Whether NuA3 is capable of acetylating histones in vivo, or how the complex is targeted to the nucleosomes that it modifies, was unknown. To address this question, we asked whether NuA3 is associated with chromatin in vivo and how this association is regulated. With a chromatin pulldown assay, we found that NuA3 interacts with the histone H3 amino-terminal tail, and loss of the H3 tail recapitulates phenotypes associated with loss of SAS3. Moreover, mutation of histone H3 lysine 14, the preferred site of acetylation by NuA3 in vitro, phenocopies a unique sas3Delta phenotype, suggesting that modification of this residue is important for NuA3 function. The interaction of NuA3 with chromatin is dependent on the Set1p and Set2p histone methyltransferases, as well as their substrates, histone H3 lysines 4 and 36, respectively. These results confirm that NuA3 is functioning as a histone acetyltransferase in vivo and that histone H3 methylation provides a mark for the recruitment of NuA3 to nucleosomes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Martin DG, Grimes DE, Baetz K, Howe L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference