Take our Survey

Reference: Karniely S, et al. (2006) The presequence of fumarase is exposed to the cytosol during import into mitochondria. J Mol Biol 358(2):396-405

Reference Help

Abstract


The majority of mitochondrial proteins can be imported into mitochondria following termination of their translation in the cytosol. Import of fumarase and several other proteins into mitochondria does not appear to occur post-translationally according to standard in vivo and in vitro assays. However, the nature of interaction between the translation and translocation apparatuses during import of these proteins is unknown. Therefore, a major question is whether the nascent chains of these proteins are exposed to the cytosol during import into mitochondria. We asked directly if the presequence of fumarase can be cleaved by externally added mitochondrial processing peptidase (MPP) during import, using an in vitro translation-translocation coupled reaction. The presequence of fumarase was cleaved by externally added MPP during import, indicating a lack of, or a loose physical connection between, the translation and translocation of this protein. Exchanging the authentic presequence of fumarase for that of the more efficient Su9-ATPase presequence reduced the exposure of fumarase precursors to externally added MPP en route to mitochondria. Therefore, exposure to cytosolic MPP is dependent on the presequence and not on the mature part of fumarase. On the other hand, following translation in the absence of mitochondria, the authentic fumarase presequence and that of Su9-ATPase become inaccessible to added MPP when attached to mature fumarase. Thus, folding of the mature portion of fumarase, which conceals the presequence, is the reason for its inability to be imported in classical post-translational assays. Another unique feature of fumarase is its distribution between the mitochondria and the cytosol. We show that in vivo the switch of the authentic presequence with that of Su9-ATPase caused more fumarase molecules to be localized to the mitochondria. A possible mechanism by which the cytosolic exposure, the targeting efficiency, and the subcellular distribution of fumarase are dictated by the presequence is discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | In Vitro
Authors
Karniely S, Regev-Rudzki N, Pines O
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference