Reference: Karanasios E, et al. (2010) A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc Natl Acad Sci U S A 107(41):17539-44

Reference Help

Abstract


Regulation of membrane lipid composition is crucial for many aspects of cell growth and development. Lipins, a novel family of phosphatidate (PA) phosphatases that generate diacylglycerol (DAG) from PA, are emerging as essential regulators of fat metabolism, adipogenesis, and organelle biogenesis. The mechanisms that govern lipin translocation onto membranes are largely unknown. Here we show that recruitment of the yeast lipin (Pah1p) is regulated by PA levels onto the nuclear/endoplasmic reticulum (ER) membrane. Recruitment requires the transmembrane protein phosphatase complex Nem1p-Spo7p. Once dephosphorylated, Pah1p can bind to the nuclear/ER membrane independently of Nem1p-Spo7p via a short amino-terminal amphipathic helix. Dephosphorylation enhances the activity of Pah1p, both in vitro and in vivo, but only in the presence of a functional helix. The helix is required for both phospholipid and triacylglycerol biosynthesis. Our data suggest that dephosphorylation of Pah1p by the Nem1p-Spo7p complex enables the amphipathic helix to anchor Pah1p onto the nuclear/ER membrane allowing the production of DAG for lipid biosynthesis.

Reference Type
Journal Article
Authors
Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference