Take our Survey

Reference: Krantz M, et al. (2006) Comparative genomics of the HOG-signalling system in fungi. Curr Genet 49(3):137-51

Reference Help

Abstract

Signal transduction pathways play crucial roles in cellular adaptation to environmental changes. In this study, we employed comparative genomics to analyse the high osmolarity glycerol pathway in fungi. This system contains several signalling modules that are used throughout eukaryotic evolution, such as a mitogen-activated protein kinase and a phosphorelay module. Here we describe the identification of pathway components in 20 fungal species. Although certain proteins proved difficult to identify due to low sequence conservation, a main limitation was incomplete, low coverage genomic sequences and fragmentary genome annotation. Still, the pathway was readily reconstructed in each species, and its architecture could be compared. The most striking difference concerned the Sho1 branch, which frequently does not appear to activate the Hog1 MAPK module, although its components are conserved in all but one species. In addition, two species lacked apparent orthologues for the Sln1 osmosensing histidine kinase. All information gathered has been compiled in an MS Excel sheet, which also contains interactive visualisation tools. In addition to primary sequence analysis, we employed analysis of protein size conservation. Protein size appears to be conserved largely independently from primary sequence and thus provides an additional tool for functional analysis and orthologue identification.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Krantz M, Becit E, Hohmann S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference