Reference: Syeda-Mahmood T (2003) Clustering time-varying gene expression profiles using scale-space signals. Proc IEEE Comput Soc Bioinform Conf 2:48-56

Reference Help

Abstract


The functional state of an organism is determined largely by the pattern of expression of its genes. The analysis of gene expression data from gene chips has primarily revolved around clustering and classification of the data using machine learning techniques based on the intensity of expression alone with the time-varying pattern mostly ignored. In this paper, we present a pattern recognition-based approach to capturing similarity by finding salient changes in the time-varying expression patterns of genes. Such changes can give clues about important events, such as gene regulation by cell-cycle phases, or even signal the onset of a disease. Specifically, we observe that dissimilarity between time series is revealed by the sharp twists and bends produced in a higher-dimensional curve formed from the constituent signals. Scale-space analysis is used to detect the sharp twists and turns and their relative strength with respect to the component signals is estimated to form a shape similarity measure between time profiles. A clustering algorithm is presented to cluster gene profiles using the scale-space distance as a similarity metric. Multi-dimensional curves formed from time series within clusters are used as cluster prototypes or indexes to the gene expression database, and are used to retrieve the functionally similar genes to a query gene profile. Extensive comparison of clustering using scale-space distance in comparison to traditional Euclidean distance is presented on the yeast genome database.

Reference Type
Journal Article
Authors
Syeda-Mahmood T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference