Take our Survey

Reference: Xufre A, et al. (2006) Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Int J Food Microbiol 108(3):376-84

Reference Help

Abstract


To analyse the yeast population diversity during wine fermentations, specific fluorescein-labelled oligonucleotide probes targeted to the D1/D2 region of the 26S rRNA of different yeast species known to occur frequently in this environment were designed and tested with reference strains. The probes were then used to identify wine must isolates and to follow, in combination with plate counts, the evolution of yeast populations in two winery fermentations of white and red grape musts. In both cases, a high diversity of non-Saccharomyces yeast species was detected, including Candida stellata, Hanseniaspora uvarum, H. guilliermondii, Kluyveromyces marxianus, K. thermotolerans and Torulaspora delbrueckii. Some of these species (e.g., K. marxianus, K. thermotolerans and T. delbrueckii) were present in significant amounts during the tumultuous fermentation stage, despite the predominance of Saccharomyces cerevisiae cells following the inoculation of the wine musts with a starter strain. To further clarify the yeast population dynamics at the late phase of the fermentations, and because winery conditions do not allow a reliable control of experimental variables, strains isolated from the industrial musts were used to conduct two laboratory microvinifications in synthetic grape juice, using different ratios of S. cerevisiae/non-Saccharomyces in the inocula. Under these conditions, the results were similar to those obtained in the winery, showing a yeast profile with mixed species throughout the first fermentation stage, i.e. until about 40-50% of the total sugar was consumed. Non-Saccharomyces yeasts were outgrown by S. cerevisiae only after ethanol reached concentrations around 4-5% (v/v), which argues in favour of a potential important role of non-Saccharomyces in the final organoleptic characteristics of the wine.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Xufre A, Albergaria H, Inacio J, Spencer-Martins I, Girio F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference