Take our Survey

Reference: Velazquez-Arellano A, et al. (2011) A heuristic model for paradoxical effects of biotin starvation on carbon metabolism genes in the presence of abundant glucose. Mol Genet Metab 102(1):69-77

Reference Help

Abstract


We recently showed that in biotin starvation in yeast Saccharomyces cerevisiae, nematode Caenorhabditis elegans and rat Rattus norvegicus, despite abundant glucose provision, the expression of genes for glucose utilization and lipogenesis were lowered, and for fatty acid beta-oxidation and gluconeogenesis were raised, and glycolytic/fermentative flow was reduced. This work explored the mechanisms of these results. We show that they are associated with ATP deficit and activation of the energy stress sensor AMP kinase (AMPK; Snf1 in yeast). Analysis of microarray results revealed extensive changes of transcripts for signal transduction pathways and transcription factors AMPK, SREBP-1c, ChREBP, NAMPT, PGC-1alpha, mTORC1 in rat, and their homologs in worm. In yeast the altered factor transcripts were Adr1, Cat8, Sip4, Mig1, HXK2, and Rgt1. The insulin pathway was negatively enriched (in rat and worm), whereas the adiponectins and JAK/STAT pathways were increased (present only in the rat; they activate AMPK). Together, all these changes explain the effects of biotin starvation on glucose utilization, energy status and carbon metabolism gene expression in a coherent manner across three phylogenetically distant eukaryotes and may have clinical significance in humans, since the effects are reminiscent of insulin resistance. We propose a general model for integrating these results in regulatory circuitries, according to the biology of each species, based on impaired anaplerosis due to pyruvate carboxylase deficiency, that have a basic underlying logic. In a preliminary test in yeast, aspartate corrects all the alterations produced by biotin starvation.CI - Copyright (c) 2010 Elsevier Inc. All rights reserved.

Reference Type
Journal Article
Authors
Velazquez-Arellano A, Ortega-Cuellar D, Hernandez-Mendoza A, Moreno-Arriola E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference