Reference: Miller KA, et al. (2010) Extracellular secretion of overexpressed glycosylphosphatidylinositol-linked cell wall protein Utr2/Crh2p as a novel protein quality control mechanism in Saccharomyces cerevisiae. Eukaryot Cell 9(11):1669-79

Reference Help

Abstract


Eukaryotic cells employ a variety of mechanisms to maintain protein quality control and homeostasis. Here we provide evidence that one such mechanism in Saccharomyces cerevisiae involves the regulated release of excess or misfolded proteins to the extracellular space. The overexpression of an epitope-tagged allele of the glycosylphosphatidylinositol (GPI)-linked cell wall protein Utr2/Crh2p (Utr2/Crh2-green fluorescent protein [GFP] or -hemagglutinin [HA]) causes endoplasmic reticulum (ER) stress and the secretion of Crh2-GFP/HA into the extracellular space. Secretion is dependent on two GPI-linked aspartyl proteases (Yps1p/2p) and components of the unfolded protein response (Ire1p and Hac1p) but is independent of ER-associated degradation (ERAD) components such as Hrd1p and Doa10p. Supporting the idea that this process represents a mechanism for protein quality control, the level of Crh2-HA is increased in strains lacking Bst1p, a protein required for the proteasomal degradation of GPI-linked proteins. Furthermore, secretion is dependent on Sec18p, indicating that it requires ER-to-Golgi trafficking, and accordingly, Crh2-HA accumulates in the ER in ire1Δ and bst1Δ mutants by cycloheximide chase experiments. Since a fraction of Utr2/Crh2-GFP properly localizes to the cell wall in an ire1Δ mutant, extracellular secretion appears to occur through a pathway that is distinct from the normal GPI protein-trafficking pathway. Taken together, these data support a model in which the unfolded protein response (UPR)/yapsin-mediated extracellular release of overexpressed Utr2/Crh2-HA or -GFP is an alternative pathway for the removal of excess or misfolded secretory proteins functioning in parallel with proteasome-mediated degradation in S. cerevisiae. This model provides an explanation for the deleterious effects of Yps1/2p on the industrial production of some recombinant proteins in S. cerevisiae.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Miller KA, DiDone L, Krysan DJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference